
energetics
technology center

Developing Autonomy for
Unmanned Surface Vehicles by

Using Virtual Environments

Principal Investigator:
Robert Kavetsky

Authors:
Robert Kavetsky, Energetics Technology Center
Satyandra K. Gupta, PhD, University of Maryland

20110112391
Prepared under grant N00014-08-1-1108, issued by the Office of Naval Research

Energetics Technology Center, Incorporated
107 Centennial Street, Suite 201, La Plata, Maryland 20646

Telephone: (301) 934-0385. Facsimile: (301) 934-0571

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 0704 0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense. Washington Headquaners Services. Directorate for Information Operations and Reports
107040188), 1215 Jefferson Davis Highway. Suite 1204, Arlington. VA 22202 4302 Respondents should be aware that notwithstanding any other provision of law. no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

REPORT DATE (DD MM YYYY)

11/10/2010
REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From To)

6/27/2008--11/10/2010
4. TITLE AND SUBTITLE

DEVELOPING AUTONOMY FOR USVs BY USING VIRTUAL
ENVIRONMENTS

5a. CONTRACT NUMBER

N \

5b. GRANT NUMBER

N00014-08-1-1108

5c. PROGRAM ELEMENT NUMBER

N/A

6. AUTHOR(S)

ROBERT KAVETSKY
SATYANDRA K. GUPTA

5d. PROJECT NUMBER

N/A

5e. TASK NUMBER

N/A

5f. WORK UNIT NUMBER

N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ENERGETICS TECHNOLOGY CENTER, INCORPORATED
107 CENTENNIAL STREET, SUITE 201
LA PLATA, MARYLAND 20646

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

OFFICE OF NAVAL RESEARCH
875 NORTH RANDOLPH STREET
ARLINGTON, VIRGINIA 22203-1995

10. SPONSOR/MONITOR'S ACRONYM(S)

N/A

11. SPONSOR/MONITORS REPORT
NUMBER(S)

N/A
12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

13. SUPPLEMENTARY NOTES

N/A

14. ABSTRACT

We address the problem of automated synthesis of an action selection policy for an unmanned vehicle operating in an environment
with a deceptive adversary. We introduce a new synthesis approach using which an initial version of the policy is automatically
generated and then gradually refined by detecting and fixing its shortcomings.

Our focus is specifically on automated synthesis of a policy used for blocking the advancement of an intruder boat toward a
valuable target. The USV must generate specific maneuvers for blocking. The intruder is human competitive and exhibits a
deceptive behavior so that the USV cannot exploit regularity in its attacking behavior.

We compared the performance of a hand coded USVs blocking policy to the performance of a policy that was automatically
synthesized. Our results show that the performance of the automatically generated USVs policy exceed the performance of the hand
coded policy and thus demonstrates the feasibility of the proposed approach.

15. SUBJECT TERMS

UNMANNED SURFACE VEHICLE, BLOCKING ACTIONS, AUTOMATED SOFTWARE GENERATION, AUTONOMOUS
BEHAVIOR

16. SECURITY CLASSIFICATION OF:

a. REPORT

NONE

b. ABSTRACT

NONE

c. THIS PAGE

NONE

17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF
PAGES

42

19a. NAME OF RESPONSIBLE PERSON

ROBERT KAVETSKY
19b. TELEPHONE NUMBER (Include area code!

(301)934-0385
Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std Z39 18

Developing Autonomy for USVs by Using
Virtual Environments

Abstract

We address the problem of automated synthesis of an action se-
lection policy for an unmanned vehicle operating in an environment
with a deceptive adversary. We introduce a new synthesis approach
using which an initial version of the policy is automatically generated
and then gradually refined by detecting and fixing its shortcomings.
The synthesis mechanism consists of the automated extraction of the
vehicle's states of exception and Genetic Programming (GP) for au-
tomated generation of corrective sequences of action commands to be
applied locally.

Our focus is specifically on automated synthesis of a policy used
for blocking the advancement of an intruder boat toward a valuable
target. This task requires the USV to utilize reactive planning com-
plemented by short-term forward planning to generate specific ma-
neuvers for blocking. The intruder is human competitive and exhibits
a deceptive behavior so that the USV cannot exploit regularity in its
attacking behavior.

We compared the performance of a hand coded USVs blocking pol-
icy to the performance of a policy that was automatically synthesized.
Our results show that the performance of the automatically generated
USVs policy exceeds the performance of the hand coded policy and
thus demonstrates the feasibility of the proposed approach.

1 Introduction

Manual development of a truly robust unmanned robotic vehicle for tasks in
which the unmanned system has to autonomously face a human-competitive

adversary exhibiting deceptive behavior is a challenge. This scenario is typ-
ical for a combat mission task where even a single mistake in the decision
of the vehicle can have fatal consequences. In such scenarios, the unmanned
vehicle has to be prepared to rapidly execute specialized maneuvers to its
default strategy in specific situations as defined by its control algorithm,
or policy to successfully accomplish its task. The difficulty in the devel-
opment of such a policy consist in manual handling of the vehicle's failure
states that arise in the encountered environments. This requires intensive
repeatable testing of the overall vehicle's behavior using a large suite of dif-
ferent test scenarios, identifying the shortcomings, and implementing various
contingency-handling behaviors (Baker et al 2008).

In this report, we present a new approach for automated policy synthesis
for unmanned vehicles operating in a continuous state-action space. This
approach can be viewed as a synthesis process during which an initial ver-
sion of the policy is automatically generated and then gradually improved by
detecting and fixing its shortcomings. Each iteration of this process involves
extensive evaluation of the overall vehicle's behavior in multiple simulation
runs, automatically finding states of failure in which the vehicle exhibited
deficiencies in accomplishing its task, selecting a state from which the vehi-
cle can avoid the largest amount of the detected faulty states by executing
an appropriate maneuver, and letting the vehicle to learn an improved ma-
neuver. This way, the focus of the synthesis process is always on the most
crucial encountered states of failure. At the end of the policy synthesis, the
vehicle thus knows which additional maneuvers to execute in which states to
enhance the performance of its default policy.

The synthesis mechanism is completely automated and consists of the
extraction of the vehicle's states of exception and Genetic Programming (GP)
(Koza 2003) for generation of corrective sequences of action commands to be
applied locally. During the whole process, no external information on how
the policy should be synthesized is therefore needed. The policy is internally
represented as a composite consisting of one default high-level controller and
a set of specialized action plans. The default controller is used to control the
vehicle's behavior in all situations besides the situations for which specific
maneuvers represented as action plans are needed. The action space of the
vehicle is represented by a set of primitive commands, each having continuous
parameters. The commands are combined, parametrized, and composed into
a structure by the synthesis process to perform the overall task. The inherent
symbolic representation of the policy greatly simplifies the analysis of its

Figure 1: Virtual environment: Unmanned Surface Vehicle (USV) is protect-
ing an oil tanker by blocking the advancement of an intruder boat

behavior. Moreover, the symbolic representation allows integrating human
knowledge and the analysis of the policy can provide the basis for improving
the code.

Our approach was tested in the context of a large project aimed at the
development of a general mission planning system (Schwartz et al 2009; Svec
et al 2010) for the automated synthesis of action selection policies for Un-
manned Surface Vehicles (USVs) (Corfield and Young 2006; Finn and Sched-
ing 2010). In this report, we extend our previous work (Svec and Gupta
2010) in which the focus is specifically on automated synthesis of a policy
used for blocking the advancement of an intruder boat toward a valuable
target (see Fig. 1). This task requires the USV to utilize reactive plan-
ning complemented by short-term forward planning to generate local action
plans describing specific maneuvers for the USV. The intruder is human-
competitive in the sense that its attacking efficiency approaches the attacking
efficiency of deceptive strategies exhibited by human operators. Our aim is
to reach the level 3 of autonomy as defined in (Board 2005). In this level, the
unmanned vehicle automatically executes mission-related commands when
response times are too short for operator intervention.

An overview of the overall approach is shown in Fig. 2. First, we de-

veloped a physics-based meta-model using a detailed dynamics model of the
USV to be able to test the policy in a simulation environment in real-time
(Thakur and Gupta 2010). Second, we developed a mission planning system
that contains a policy synthesis module (see Section 5). The necessary sys-
tem architecture of the USV including the policy and state representation is
described in Section 3. In order to combine the elements of the project into
a cohesive system, we designed a USV simulation environment (see Section
4) (Svec et al 2010). The USV simulation environment integrates various
components of the project into a complete simulation system and acts as a
simulation platform for the synthesis module. One of the components of the
USV simulation environment is the virtual environment (VE) based simula-
tor (see Fig. 1) which serves as an emulator of the real USV environment
that allows human players to play against each other or against the com-
puter. Finally, we present an experimental evaluation of the approach in a
challenging simulated combat-like scenario to demonstrate the feasibility of
the proposed approach (see Section 6).

usv
Simulation

Model

USV
Test Data

Develop USV
Meta Model

Develop Virtual
Environment for

Interactive
USV Operation

Mission
Parameters

Human
Expert

Knowledge

Synthesize
Action Selection

Policy

USV
Meta Model

Policy Used
by Humans

Computer
•j Synthesized

Policy

Benchmark
Computer

Synthesized
Policy

Figure 2: Overview of the overall approach

2 Related Work

Computational synthesis (Lipson et al 2003) deals with the problem of how
to automatically compose and parametrize a set of functional building blocks
into a hierarchical solution structure with the desired functionality. This is
in contrast to classical optimization in which the number and structure of
modules and parameters being optimized is known in advance.

Evolutionary Robotics (ER) (Floreano and Mattiussi 2008) is a methodol-
ogy that uses evolutionary algorithms to automatically synthesize controllers
and body configuration for autonomous robots. As opposed to the use of
standard temporal difference methods to approximate a value function (Sut-
ton and Barto 1998), simulated evolution searches directly for a policy that
maps states to actions.

In literature, there are many successful applications of evolutionary tech-
niques to robots' controllers synthesis. In many cases, the representation
of the evolved controllers is a neural network. In the domain of neuroevo-
lution, a popular method is the Neuroevolution of Augmenting Topologies
(NEAT) (Stanley and Miikkulainen 2002) that was successfully applied to
many controller synthesis problems. The main issue with the neural network
representation, however, is the difficulty of analyzing the evolved solutions.

Besides the possibility to use methods for rules extraction from the evolved
neural networks (Diedcrich et. al 2010), controllers can also be directly synthe-
sized in a symbolic form. One of the techniques used to generate symbolic
controllers is Genetic Programming (GP) (Koza 2003). GP as one of the
robust evolutionary techniques has been used for automatically generating
computer programs that usually have a tree structure and are generated vis-
ing an algorithm similar to the traditional genetic algorithm (GA) (Goldberg
1989). Most of the controllers were successfully evolved for a wide variety
of behaviors as obstacle avoidance (Barate and Manzanera 2007; Nehmzow
2002), wall-following (Dain 1998), line following (Dupuis and Parizeau 200G),
light seeking, robot seeking (Nehmzow 2002), box pushing (Koza and Rice
1992), vision-driven navigation (Gajda and Krawiec 2008), homing and cir-
cling (Barlow and Oh 2008), predator versus prey strategies (Haynes and Sen
1996), co-evolution of control and bodies morphologies (Buason et al 2005),
game playing (Jaskowski et al 2008; Togelius et al 2007; Doherty and ORior-
dan 2006) or group control for survey missions (Richards et al 2005). GP was
also utilized for the automated synthesis of human-competitive strategies for
robotic tanks run in a closed simulation area to fight other human-designed

tanks in international leagues (Shichel et al 2005). There was also some
progress on development of limited machine intelligence for classical strate-
gic games like backgammon or chess endgames (Sipper et al 2007).

However, for high-level strategy problems, e.g. the keep-away soccer
(Kohl and Miikkulainen 2008), the discontinuous structure of the state-action
space prohibits the standard evolutionary algorithms to generate good solu-
tions. The monolithicity and the reactive behavior of the evolved controllers
limit their usage for complex fractured domains (Kohl and Miikkulainen
2008) in which the robot's best actions can radically change as the robot
is moving continuously from one state to the other.

In the domain of symbolic controllers, Learning classifier system (LCS)
(Bacardit et al 2008, Lanzi 2008, Ryan et al 2009) can be considered as one
of the best options to cope with the fractured state-action space problems in
robot learning. LCS represents a comprehensive class of evolutionary systems
that solve reinforcement learning problems by evolving a set of classifiers or
rules responsible for handling different local parts of input spaces of the
problems. Our proposed approach extends the general paradigm of these
systems to highly dynamic and continuous environments. In LCS, the genetic
algorithm searches for an adequate decomposition of the problem into a set of
subproblems by evolving classifier conditions. In our approach, we iteratively
detect states in which the robot exhibits deficiencies in fulfilling its task and
then find new states from which synthesized specialized action plans can be
executed to avoid the failure states. We use GP as a discovery component
for the action part of the classifiers.

In the neuroevolution domain, there are examples of methods used for
synthesizing different behaviors for different circumstances (so called multi-
modal behaviors (Schrum and Miikkulainen 2009) arising in continuous state-
action spaces. However, it is difficult to learn such behaviors reliably and
without extensive human intervention, e.g. as is the case of the layered evo-
lution combined with the subsumption architecture (van Hoorn et al 2009).
Moreover, the number of behaviors to evolve is usually determined in advance
by a human designer. In most applications, the behaviors are learned and the
control mechanism is hand coded, or the control mechanism is learned and
the behaviors are hand-coded. In some cases, both behaviors and the control
mechanism are learned but separately and with extensive human help.

Recently, neuroevolutionary methods have been developed that discover
multi-modal behaviors automatically and do not depend on knowledge of
the task hierarchy. For example, a special mutation operator was proposed

in (Schrum and Miikkulainen 2009) for evolving special output nodes that
control the mode of the behavior. However, the potential number of modes
needed to be evolved can be very high for some tasks. Another work (Kohl
and Miikkulainen 2008) extends NEAT to use radial basis function (RBF)
(Buhmann 2001) nodes to evolve controllers with better performance for
complex problems. Similarly, HyperNEAT has been developed as another
extension of the NEAT method with the ability to evolve highly complex
compositional neural networks (CPPN) (Stanley et al 2009) having the reg-
ularity, modularity, and hierarchy properties for some problems.

3 USV System Architecture

In this work, we focus on the automated synthesis of an action selection
policy for the USV to block the advancement of an intruder boat toward a
particular target. For this task the USV is required to utilize reactive plan-
ning complemented by short-term forward planning to generate local action
plans representing specific maneuvers. The developed policy synthesis ap-
proach is closely coupled to the underlying system architecture of the USV.
The architecture consists of several modules that are responsible for differ-
ent tasks, e.g. sensing, localization, navigation, planning, behavior control,
communication, human interaction, or monitoring (Corfield and Young 2006;
Finn and Scheding 2010).

The high simulation speed of the USV's dynamics model is critical for
policy synthesis and therefore we use its simplified version with 3 degrees
of freedom. This simplified model has been adapted from the full-blown 6
degrees of freedom USV dynamics model as described in (Thakur and Gupta
2010). The full-blown model considers disturbances from the surroundings
and is used for high-fidelity physics-based real-time simulations inside the
virtual environment.

3.1 USV Virtual Sensor Models

The planning system of the USV needs to only process relevant key sensory
information abstracted from the raw sensor data. The sensory information
is thus represented as a vector containing only the features required for a
successful fulfillment of the mission task. The values of the relevant features
are computed using the data from the virtual sensors (LaValle 2009) that

Senso range

Front-
Left
Sensor
Area

Front- ^~^-
Right / \^
Sensor / \
Area / \

/ Left Sensor
' Area ../

Right Sensor \
Area

Sensor reach / \^^"

\ Safety zone

Figure 3: USV sensor model

provide intermediate abstraction of the raw sensor data. Some of the features
can also have one or more parameters using which their final values are
computed.

The planning system uses virtual visibility, relational, and velocity sen-
sors. The virtual visibility sensor is a detection sensor with cone-shaped
detection regions (see Fig. 3). The dimension of the overall sensor area is
defined by its reach and range parameters. Each region returns a boolean
value expressing the presence of other objects and a normalized distance to
the closest object. The relational virtual sensor provides relevant information
on how other objects are situated with respect to the USV or to each other.
It provides boolean values for computation of the values of the relational
features. The velocity virtual sensor returns the velocities of other objects
inside the environment.

3.2 Planning Architecture

3.2.1 Policy Representation

The sequential decisions made by the vehicle depends on its action selection
policy 7r. The policy n is defined in the context of the semi-Markov decision
process (SMDP) (Ibe 2009) and consists of one default policy n^ and a set
of specialized local policies ni that map macro-actions to a specific set of
overlapping regions IT = {Si,..., Sn} of the state space S. The SMDP models
temporally extended actions and is defined as a tuple (S, A, T, R, F), where

5 is a finite set of states, A is a finite set of actions, T : S x A x S —> [0,1] is a
probabilistic transition function, where T(s, a, •) is a probability distribution
for any s € S and a £ A, R : S x A —• K is a reward function that computes
vehicle's immediate reward for taking action a in s, and F is a function giving
probability of transition times for each state-action pair. The transition
distribution is defined as F(s',N\s,a) and specifies the expected number of
steps TV the action a takes starting in state s and terminating at state 5'.

Hence, the policy n allows the USV to make a decision from a set of
allowable actions based on observations of the world state. The default pol-
icy •Kd is represented as a high-level controller (see Fig. 4). This controller
is represented as a decision tree consisting of high-level parameterized com-
mands NC, conditional variables CV, standard boolean values and operators
BVO, program blocks PB, and system commands SC (see Tab. 1). The local
policies are represented as action plans. The action plans are sequences of
parametrized high-level action commands NC and program blocks PB. The
action plans are internally represented as trees so that the same synthesis
mechanism used to generate the default controller can also be used to gener-
ate the plans. The leaves of the decision tree can be conditional variables or
action commands. The inner nodes can be conditionals, action commands,
or system commands. Each action command corresponds to a particular
high-level controller, which is a parameterized composition of simple behav-
iors according to the behavior-based control architecture (Brooks 1991). The
section 3.2.3 describes this in detail.

The conditional variables, action, and system commands are parameter-
ized. The parameters of an action command define its underlying property.
The positional commands (e.g. go-intruder-front) are defined using 5 param-
eters. The first two parameters represent the USV's relative goal position
(in polar coordinates) around the intruder. This effectively allows the vehi-
cle to cover all feasible positions, as defined by its policy in a certain area
around the intruder. The next two parameters represent a cone-shaped block-
ing area around the relative goal position. Once the vehicle gets inside the
blocking area, it starts slowing down to limit the intruder's movement. The
last parameter represents the length of the command execution. The turning
action commands have two parameters that represent the turning rate and
the length of the command execution. The translation velocity is explicitly
controlled by the velocity commands. The usv-sensor system command ef-
fectively changes the parameters of the USV's sensors allowing it to explicitly
control the risk level of the obstacle avoidance behavior. Each parameter of

NC go-intruder-front (front-left, left, front-right, right)
turn-left (right)
go-straight

cv intruder-on-the-left (right, front, at-the-back)
intruder-has-target-on-the-left (right)
usv-has-target-on-the-left (right)
usv-intruder-distance-le-than
usv-closer-to-target-than-intruder
usv-facing-intruder
usv-left (right, front-left, front-right)

BVO if, true, false, and, or, not
PB seq2, seq3
SC usv-sensor, usv-velocity, usv-match-intruder-

velocity

Table 1: Policy primitives

the command is propagated to the underlying primitive behaviors of each
corresponding high-level controller.

The input into the policy is data from the virtual sensors. The values
of all conditional variables are computed using this data. So for example,
the boolean value of the intruder-on-the-left variable is directly provided by
the virtual relation sensor while the data for computation of the intruder-
velocity-le-than parameterized variable is provided by the virtual velocity
sensor.

3.2.2 Policy Execution

During the mission, the USV periodically senses its surroundings and clas-
sifies its current state with respect to the intruder and the target. The
classification mechanism of the policy executor decides whether the current
state is close enough to one of the states for which a corresponding action
plan exists. If such a plan exists, the policy executor directly executes the
plan, otherwise it executes the default controller to generate a new sequence
of actions. The decision whether to execute a specific plan depends on the ac-
tivation distance parameter <). This parameter defines the minimal distance
that has to be achieved between the current USV's state and any state in the
predefined set to activate a specific plan. The state space S = S\ US2 is thus

10

Sensory
input

Motor command
Output Execution Execution Execution

 time time time
Command Command I Command I

1 —' 2 I 3

(a) Overall policy that consists of one default controller and a set of
action plans. The product of the execution is a sequence of action com-
mands (bottom)

Command 1 C SEQ)
Execution
time / \^ "

Execution Execution
 time
Command 3 I Command 2 I

(b) Example of a default controller (left) and an action plan (right)

Figure 4: Policy representation

11

Oil tanker

Intruder

Figure 5: USV's state in respect to the intruder and target

divided into two regions where in the first region Si the USV generates and
executes plans using the default controller, whereas in the other region 52 the
USV directly executes previously generated or manually defined plans. The
action plan thus represents a certain maneuver the USV executes in a cer-
tain situation to increase its performance. The distance between normalized
states is computed using the standard Euclidean distance metric.

The full state of the USV (see Fig. 5) is represented by a 8-dimensional
vector of state variables s = [QI , 0:2, /3\. /32, t'i ,v2.^,d] that encodes attributes
of the environment for the task. The angle a\ represents an angle between
the USV's heading and the direction to the target, a2 is an angle between the
intruder's heading and the direction to the target, Q\ is the USV's steering
angle, /^ is the intruder's steering angle, V\ is the USV's translation velocity,
v2 is the intruder's translation velocity, 7 is an angle between the USV's
heading and the direction to the intruder, and d is the distance between the
USV and the intruder.

3.2.3 Hierarchical Control Architecture

By acquiring and processing sensor data in short-term cycles, and planning,
the planning system determines an action command to be executed through
the behavior-based control system to direct the vehicle inside the environ-
ment. The policy executor of the planning system takes as inputs sensor
data, mission parameters, USV meta model, and the policy. It decides which

12

component of the policy to execute to generate a plan based on the current
vehicle's state. The plan consists of a number of action commands, each
being executed for a certain amount of time. The ultimate outputs of an
activated command are way points that are directly translated by a low-level
controller into motor commands for device drivers of a particular actuator.

The control architecture is hierarchical and follows the behavior-based
paradigm (Brooks 1991). It consists of planning, executive, and reactive
layers (see Fig. 6). The planning layer is responsible for interpreting stored
policy and generating action plans. The commands are stored in a queue
to be further dispatched for execution by the dispatcher in the executive
layer. The commands are usually planned for short-term execution, such
as planning of strategic maneuvers. The vehicle thus does not act purely
reactively to its surroundings unless an exception occurs.

Each command corresponds to a high-level controller, which is a param-
eterized composition of simple behaviors organized into layers according to
the behavior-based control architecture (Brooks 1991). The executive layer
is responsible for processing the commands in the queue and invoking the
corresponding high-level controllers in a series for planned periods of time.
The length of the execution is defined as a parameter of the command. The
executive layer is also responsible for monitoring execution of the controllers
and handling exceptions. An exception occurs if the current state of the
vehicle substantially deviates from the predicted trajectory defined by the
plan. The policy executor remains inactive until all the commands from the
queue are processed in which case the dispatcher requests new commands
from the executor and the control process continues.

The reactive layer implements the behavior-based subsumption architec-
ture (Brooks 1991). This architecture decomposes a complicated high-level
controller into a set of simple behaviors (steer left / right, go straight, arrive)
organized into layers. These primitive behaviors are finite state machines
acting in response to sensor inputs and producing actuator action outputs.
Multiple behaviors can be activated simultaneously producing different con-
flicting motor commands. This means that a certain amount of coordination
is needed. Due to its robustness, we have chosen a priority-based arbitra-
tion mechanism, picking the actuator action output of the behavior with the
highest priority as the overall action output of the currently activated high-
level controller. This closely follows the behavior-competitive paradigm that
imposes that only one behavior can have control over the robot's actuators
while each of them can access all sensors. In this paradigm, the behavior in

13

the highest layer has the highest priority (for example obstacle avoidance)
while the behavior in the lowest layer represents the most abstract function-
ality. In the architecture, each high-level controller specifies a fixed priority
ordering of behaviors as defined by (Brooks 1986).

The primitive behaviors are of a great importance as they are able to
quickly produce an action in a highly dynamic environment where fast re-
sponse is crucial. A behavior is a simple unit that produces an output of
a pre-defined type, in our case a two-dimensional vector containing desired
translation velocity and steering angle. Conditions for activating behaviors
are preprogrammed. The architecture defines the following primitive behav-
iors: obstacle avoidance, go to location, go straight, turn left, and turn right.

By default, the behaviors always choose such translation and steering
velocities that maximize the USV's performance. So for example, go-straight
behavior uses maximum translation velocity to get to the requested position
in the shortest amount of time. The policy can override this by calling
usv-velocity system command. This command switches the vehicle to its
controlled velocity mode in which the USV's translation velocity is controlled
by the higher-level policy.

3.2.4 Obstacle Avoidance

The behavior of many standard avoidance methods is driven by its carefully
tuned parameters. These parameters control the behavior of the vehicle,
particularly how much steering should be applied when a nearby obstacle is
positioned at a certain distance and angle, and how fast the vehicle should be
moving in that situation. Hence, for our mission task, the resulting behavior
can be quite different with different parameters essentially controlling the
vehicle's safe distance from the adversary and blocking efficiency at the same
time. Insufficient avoidance steering can lead to collisions. On the other
hand, too much steering will veer the vehicle away from the adversary leading
to ineffective blocking.

The obstacle avoidance behavior is a necessary part of all high-level con-
trollers. It uses the virtual visibility sensor (see Fig. 3) in order to identify the
location of detectable obstacles. It directly produces desired translation ve-
locity and steering angle to safely steer the vehicle away from the closest iden-
tified obstacles. The desired steering angle increases with the proximity to
the obstacles while the translation velocity decreases. We have implemented
a collision avoidance method that uses high-level sensory information, e.g.

11

SENSORS

VIRTUAL SENSORS

Executive layer

_J „ L
Behavior 2

Activation
condition

T
Sense

X
Act

Behavior 1

Activation
condition

X
Sense

X
Act

Low-level
commands

Priority-based
behavior
arbiter

Final actuator command

Executive
layer

Planning
layer

High-level
• controller

dispatcher

Policy
executor

t Action
selection

policy

a
q a

' •

a
J 0

a a
dCOo

Command
queue

Command 1

Command 2

Command 3

ACTUATORS

Figure 6: Hierarchical behavior-based control architecture

15

positions, orientations, and dimensions of obstacles, to directly decide which
steering angle and translation velocity to request. The avoidance mecha-
nism uses a fixed set of control parameters. However, the behavior can be
conveniently controlled by modification of the underlying parameters of the
visibility sensor. This way, the USV can get closer to obstacles than it would
be otherwise possible and thus effectively define a balance between safe and
aggressive maneuvering. The command usv-sensor of the policy modifies the
reach and range parameters of the virtual visibility sensor cones. Moreover,
as far as computational requirements are taken into account, the obstacle
avoidance mechanism should be very fast so that it does not consume much
of the simulation time.

4 Simulation Environment

4.1 New Design of the Simulation Environment

The Energetics Technology Center (ETC) is in the process of developing a
USV simulation environment in support of several tasks assigned to the USV
project. This software currently consists of four main components with. The
four components are Virtual Environment-based (VE) Simulator, Controller
Model, Mission Planner and the Sensor Model. The four modules are pic-
tured in Fig. 7. The four modules may run within a single application on a
single machine or as four separate processes, possibly on remote machines.
The modules pass data using sockets along with send and receive queues.
The queues are managed by separate threads as depicted by "T" in the di-
agram. The transfer rates are configurable. The numbers in the diagram
were arbitrarily chosen. A centralized memory manager is used only when
the modules run within a single application. One of the motivations for this
design is to allow Hardware-in-the-loop (HIL) simulations to be done in the
future.

In the older version of the system, the Mission Planner module was com-
pletely responsible for calculating the positions and orientations of the boats
using an internal dynamics model. This was a simple car dynamics model.
The Mission Planner then passed the positions and orientations on to the
VE Simulator module, which then applied some simple physics calculations
in order to modify the pose fed in by the Mission Planner and rendered the
scene. The Mission Planner and VE Simulator used to be embedded in one

16

SOHz

Controller Model

Receive queue

1H/

VE-based simulation

Central Memory
Manager

(thread safe)

Navigation Planner | Receive queue

15Hz

Receive queue

Sensor Model

J3 Lie I*— 8Hz

Figure 7: Four main modules of the USV simulation environment

application and communicated with each other using function calls instead of
network sockets. Consequently, the monolithic application containing both
software components quickly became challenging to manage and upgrade.

In the latest, redesigned, version of the system the Controller Model takes
inputs for each boat from the Mission Planner module in the form of:

• object id

• desired speed

• desired acceleration

• desired angular speed

• either desired heading or waypoint (longitude, latitude)

The Controller then uses a built-in PID controller to calculate forces
which need to be applied on the boat in order to meet the desired results.
The forces torque and drive force - are then sent to the virtual environment

17

based simulator which is responsible for using physics models to determine
actual motion. The torque and thrust which the Controller calculates are
roughly equivalent to forces the boat may experience from the propeller and
rudder. There is a feedback loop from the VE Simulator to the Controller
Model, supplying current pose, velocity, acceleration and other information.

Upon receiving the drive force and the torque from the Controller Model,
the VE Simulator first calculates the motion of the boat based on just these
two forces. Then, it has two options for calculating motion resulting from
wave action. It can use the built-in high fidelity physics engine or it may use
a simple high performance method of producing bobbing motion. After the
motion has been calculated and rendered, the VE Simulator passes off the
positions and orientations of all objects to the Sensor Model.

The Sensor Model is tasked with feeding sensor data into the Mission
Planner, completing the loop. It receives ground truth from the VE Simu-
lator. The Sensor Model loads the collision mesh of the object, which also
.selves as a point outline, from a shared configuration file. The Sensor Model
then applies a transformation, based on positional data it received from the
VE Simulator, on each of the outline points. The transformation takes into
account the perspective of the USV or intruder in order to rotate and trans-
late the points representing terrain and boat obstacles. Those points are
then shipped to the Mission Planner. The intent is for the Mission Planner
to make collision avoidance decisions based on terrain and obstacle polygons
arriving over the network. One of the tasks of the Sensor Model is to first
add some error into the data. Currently, data is not altered, however. Future
work will address the issue of adding noise and error to the data.

The communication between the four modules is carried out over the
network. The modules use connectionless datagram sockets for fast com-
munication. Data is sent over the network in binary format to reduce the
payload size. Four classes encapsulate the messages sent from each module.
The modules can access the data inside the messages simply by calling ac-
cessor functions. Whereas the real controller will likely have access to a GPS
receiver, it was important for the communication interface to support trans-
mission of realistic longitude and latitude. Representing position data using
longitude and latitude is a good way to standardize exchange of positions
in general because longitude and latitude are well known and well defined
means of specifying global locations. The size of the message classes had
to be expanded so as to accommodate the new size of position data. Both
latitude and longitude had to be transmitted as doubles instead of floats in

L8

order to allow conversion to meters. Due to the fact that each longitude or
latitude degree represents a distance that is far larger than a meter, these
two measurements had to be encoded in a data type with very high precision
(e.g. support for high number of decimal digits). Internally the modules use
meters. The conversion is made using a set of convenient static functions.

In addition to the separation of the four main components of the system
and the redesign of the communication mechanism they use, several modules
have also been internally upgraded. The virtual environment simulator mod-
ule no longer has hardcoded terrain models. Rather, the configuration file
and the class which loads it have been expanded to allow a comma separated
list of terrain files. The obstacle positions are also no longer hardcoded. Ob-
stacle data is now stored in separate files, one file per obstacle. The main
configuration file has a comma separated list of obstacle configuration files.
The class which loads the configuration files has been made available to all
four modules. This allows all modules to initialize their environment with
the same shared data.

4.2 Development of the Infrastructure for Physical Test-
ing of Generated Policy

Significant coding effort has been spent on the second version of the image
processing application. This application will be used to keep track of model
boats. The environment in which these small boats are meant to operate is
a 50 foot wide tank within the Neutral Buoyancy Research Facility (NBRF)
at University of Maryland. Although the first version was fully operational,
it was very user unfriendly and difficult to configure. This configuration dif-
ficulty is what led to several human errors in the past, resulting in a lot of
lost time diagnosing and then reconfiguring the system at the NBRF. The
second version of the system was designed to fix these problems by allow-
ing easy reconfiguration of the system with a lot of automatic computations,
taking the potential for user error out of many configuration tasks. In the
month of July, all the coding work was related to user interfaces of the appli-
cation (e.g. windows, dialogs, context menus, etc.) and the communication
between them. During most of the month of August, work on this project at
ETC dealt with wrapping up the implementation and testing of the second
version of the image processing software used to keep track of model boats.
The objective of the second version of the software was mainly to streamline

If)

and optimize the tracking and calibration process. Work on this image pro-
cessing application falls under Task #14 validate and assess the quality of
computer generated software by conducting tests on USSV-HTF.

The first version of the software was divided into two separate compo-
nents. The tracking component was built at ETC while the calibration com-
ponent was created at UMD. Much of the input needed for the calibration
component had to be generated by hand in the first version of the system.
This opened up many opportunities for human error and slowed down the
calibration process. Output produced by the calibration component, in the
form of a binary file, was used as input in the tracking component. All
tracking attributes and settings from the number of targets and their colors
to world coordinate adjustments were static tracking application had to be
restarted, after changes to a configuration file were made, for new changes
to take effect.

The second version of the software solved these problems by (1) fully
integrating the calibration module into the tracking software, (2) calculating
much of the calibration data automatically, and (3) providing a mechanism
for changing the tracking attributes dynamically. The latest version of the
software has streamlined the tracking and calibration process in two tangible
ways:

• Once the physical setup is in place, software calibration can now be
performed in about 10 minutes instead of 25 minutes.

• As a result of heavy use of multi-threading, tracking speed has been
raised from 10 fps to 14 fps.

4.3 Modeling of Shorelines

The last week of August was used to work on Task #8 incorporate models of
shorelines in the simulation environment. ETC was able to take advantage of
some talented new personnel within the organization to create new models of
terrain a task previously performed by interns. The models of terrain were
created using a software tool called LightWave and then converted into a file
format used by the USV simulation environment. Although there is a reliable
process for translating CAD models of terrain created with LightWave and
Blender into the file format used in the simulation environment, the process
still requires some hand tuning and often takes a good amount of time. In

20

addition to representing a shoreline with a CAD model inside the simulation
environment, appropriate collision handling had to be implemented. Collision
detection has been enabled between boats and terrain, in addition to collision
detection between just boats. The same simple collision physics which was
used for boat-to-boat interactions in phase 1 of this project is now used for
boat-to-terrain interactions.

4.4 Additional Visualization Features of the USV Sim-
ulation Environment

Improvement of the rendering quality of the ocean is something that has
been gradually carried out at ETC, often during a brief lull in activities.
Previously, the ocean geometry had a single water texture applied to it. The
texture was static. It did not shift based on the motion of the waves. Vari-
ous lighting, texture and color calculations for rendering the ocean were also
performed mainly on the CPU using the Ogre rendering engine. In July
new features were added which shifted many calculations to the GPU us-
ing OpenGL Shading Language (GLSL). Currently, most of the lighting and
color calculations are performed using OpenGL vertex and fragment shaders.
This enables a much more fine grained level of control over how the ocean
is rendered. These techniques will allow many other improvements in the
future. The most immediate improvements are multi-texturing and dynamic
shifting of textures. The rendered appearance has been improved with the
addition of a second sky texture which is blended with the water texture.
Texture coordinates for both textures are now continuously recalculated ev-
ery frame update to shift based on the motion of the waves, making the water
look more "alive". One added side effect of integrating GLSL into the USV
simulation environment is that much of the ocean physics calculations may
be performed on the GPU (implemented in GLSL) in the future. This should
allow us to significantly boost the speed of high fidelity physics simulations
at some point down the road. Some preliminary planning has already started
between the UMD team and ETC team. Fig. 1 presents a scene from the
simulation environment with improved graphics.

21

Synthesize an
initial version of the

policy

Evaluate the policy
in a number of test

scenarios

Find the most
frequent

shortcoming

Integrate the
substitute into the
complete policy

Automatically
synthesize and

optimize a
substitute for the

shortcoming

Figure 8: Policy synthesis overview

5 Policy Synthesis

In this section, we describe our approach for policy synthesis that can be
viewed as a completely automated process during which an initial version
of the policy is automatically synthesized and then gradually refined by de-
tecting and fixing its shortcomings (see Fig. 8). In this iterative process,
the states in which the vehicle has a high probability of failing its task are
identified and new specific action sequences are generated for the vehicle to
avoid these failure states in future planning. Plans are incrementally synthe-
sized for a sequence of representative states of exception and their immediate
neighborhoods in which the vehicle has the highest potential of avoiding the
largest amount of the detected failure states. In this way, the new plans
are incrementally associated with specific isolated groups of nearby states to
improve the efficiency of the defaidt policy. The synthesis process takes the
advantage of the fact that a large proportion of the state space is not encoun-
tered during the actual policy execution so that the possible state explosion
can be avoided. A diagram describing a detailed portion of the the overall
synthesis process is depicted in Fig. 9. It particularly shows the evaluation
- action plan generation section of the whole cycle (see Fig. 8) as discussed
next.

The actual algorithm for computing the policy takes input as a SMDP
model and computes a stationary policy n : S —» A that attempts to maxi-

22

mize expected accumulated reward. The main steps of the algorithm are as
follows:

1. Employ GP to evolve an initial version of the policy 1:4.

2. Evaluate -n^ inside the simulator in m distinct evaluation runs. This
evaluation returns a set of states of failure 5/ = {s/i, ...,s/„},n < m
in which the vehicle fails its mission task.

3. Given Sj, compute a corresponding set of states of exception Se =
{sex, ...,sen} in which proximity (given by the activation distance pa-
rameter 8) the vehicle has the potential to avoid the states of failure if
it executes appropriate corresponding action plans.

4. Compute a representative state of exception seTep € Se, as described in
detail in Section 5.1, in which the vehicle has the potential to avoid the
largest amount of the detected failures. The vehicle thus can execute a
specific action plan in serep and its neighboring states to decrease the
probability of occurrence of the corresponding states of failure. In this
way, the focus is always restricted to the most critical states of failure
first while leaving the rest for possible later processing.

5. Employ GP to synthesize a new specific action plan for the represen-
tative state of exception serep. To prevent over-specialization of the
new plan, evaluate its performance using all states of exception found
within serep activation distance S during the overall policy evaluation
in step 2.

6. Optimize the new plan and integrate it into the whole policy together
with its corresponding seTep. If the termination condition is not satis-
fied, continue to step 2. The distance between the normalized states is
computed using the Euclidean distance metric.

5.1 Extraction of a representative state of exception

The overall algorithm identifies states of failure Sj in which the vehicle has
a high probability of failing its task due to the execution of inappropriate
actions. The algorithm for extraction of the representative state of exception
seTep (see Alg. 1) always extracts a state in which the vehicle can execute an

23

appropriate action plan to avoid the largest portion of the detected states of
failure.

The algorithm iterates over all states of exception se G Se and for each of
them finds its neighboring states seNeighbor!l = {seNeighbor\ \\se, seNeighbor\\ <
6} within the activation distance 5. Then, for se and each neighboring state
from the set se Neighbors^ a corresponding state of failure sf is found and all its
neighbors sfNeighbors = {sfNeighbor\ \\sf,sfNeighbar\\ < 6} within the distance
5. The algorithm terminates by returning se that is associated with the
largest amount of corresponding states of failure.

Algorithm 1 Extraction of a representation state of exception se rtji

Require: States of exception Se, states of failure 5/
serep <— NIL
sizemaj < u
for all se G 5P do

seNeighbars <— FINDNEIGHBORS(.ST. 5)
Sf*-0
for all seNetghbor G se U seNeighbors do

Sf «- FlNDCORRESPONDINGFAILURE(sejvejgh5or)
Sf Neighbor, *~ FlNDNEIGHBORS(s/. S)

bf = Jf U SJNeighbors

end for
if | Sf | > sizemax then

i o I sizemax < \<Jf\

S^rep * Se
end if

end for
return serep

In the context of our mission task, a state of failure defines a situation in
which the USV has a high probability of losing a future chance to block the
intruder. Its corresponding state of exception is found by reverting back in
time for a predefined number of time steps T to record a state from which a
new specific action plan can be executed to prevent a possible future failure.
This simple way of determining a state of exception can be further improved
by developing a special task-related heuristics that precisely determines a
state from which the vehicle will have the highest chance of successfully
avoiding the largest amount of possible failure states.

24

Evaluation
test scenarios

r >

Evaluate policy IT

States of failure
(St)

- -•

f >
Compute states of

exception
(S.)

^ J

s.

1
f >

Find representative
state of exception

(Serap) c > s >

Synthesize action
plan for se>.P

v. J
f >

Find all neighbors of
serep within activation

distance 6

Figure 9: Extraction of a representative state of exception se rep

25

5.2 Evolution

The evolution searches through the space of possible plan configurations to
find the best possible action plan for a particular state. Both the default
controller and specialized action plans as components of the policy are au-
tomatically generated using separate simulated evolutionary processes. The
specific evolutionary method we used is the strongly-typed Genetic Program-
ming imposing type constraints on the generated Lisp trees (Poli et al 2008).
This is a robust stochastic optimization method that searches a large space of
candidate program trees while looking for the one with the best performance
(fitness value).

The evolutionary process starts by randomly generating an initial popu-
lation of individuals represented as GP trees using the Ramped half-and-half
method (Poli et al 2008). The initial values of parameters of all action com-
mands and conditionals are either seeded or randomly generated. The default
cont roller of the policy is generated using a human written template for which
GP supplies basic blocking policy. The first portion of the template encodes
a maneuver using which the vehicle effectively approaches the intruder at the
beginning of the run as there is no need for it to be explicitly evolved.

The terminal T and function sets F consists of action commands, system
commands, conditional variables, boolean values and operators, and program
blocks as defined in section 3.2.1. The sets arc defined as

1 controller = 1 plan =WC U AC

Fcontroller =CV U BVO U BP; Fplan =PB

Within the population, each individual has a different structure responsi-
ble for different ways of how it responds to its environment. The individuals
are evaluated in the context of the whole policy inside the simulator. The
sensory-motor coupling of the individual influences the vehicle's behavior re-
sulting in a specific fitness value that represents how well the USV blocks
the intruder.

We favor individuals which can rapidly establish basic blocking capabil-
ities and optimize them to push the intruder away from the target over the
entire trial duration. To do so, the fitness F is defined as the sum of nor-
malized squared distances of the USV from the target over all time steps.
If a collision occurs, either caused by the USV or the intruder, the zero fit-
ness value is assigned to the individual, and the selection pressure eliminates

26

the policy component with low-safety guarantee. The fitness function is as
follows:

1 T

1
 i=i

(i)

where T is the total number of time steps, d, is the distance of the intruder
from the target at time step i, and d0 is the initial distance of the intruder
from the target in a particular test scenario. The total fitness value of the
individual is maximized and computed as an average of the fitness values
resulting from all scenarios.

The default controller is evaluated using a human-competitive intruder
in 8 different scenarios. In each scenario, the intruder has a different initial
orientation, and the USV always starts from an initial position closer to the
target. The evaluation lasts for a maximum amount of time steps which
equals to 300 seconds in real time. The maximum speed of the USV is set to
be 10% higher than the speed of the intruder, other properties of the vehicles
are the same. The action plan is evaluated using all states of exception found
within the activation distance of its corresponding serep. The evaluation lasts
for a maximum amount of time steps which equals to 10 seconds in real time.

The individuals in the initial population mostly exhibit random behav-
ior. By selecting and further refining the individuals with high fitness, their
quality gradually improves in subsequent generations. During this process,
the individuals are randomly recombined, mutated, or directly propagated
to the next generation. These operations are applied with the predefined
probabilities (see Tab. 2). The following evolutionary operators are used:

1. Reproduction - copies one individual directly to the next generation
without any modification. We use a strong elitism to propagate the
best individual directly into the next generation. This makes sure that
the best individual is not lost during the evolutionary process as a
consequence of recombination.

2. Mutation - we use three types of mutation operators: structural muta-
tion of a randomly selected sub-tree, preventing bloat (Poli et al 2008)
by shrinking a randomly chosen sub-tree to a single node, and Gaussian
mutation of chosen parameters.

3. Crossover - randomly selects sub-trees from two input trees and swaps
them.

27

Population size /
number of generations

500 / 100 (controller)
50 / 30 (plan)

Tournament size 2
Elite set size 1
Min. and max. initial
GP tree depth

3 and 6 (controller)
2 and 4 (plan)

Maximum
GP tree depth

50 (controller)
10 (plan)

Crossover prob. 0.84
Structure mutation prob. 0.05

Shrink structure muta-
tion prob.

0.01

Mutation prob. of pa-
rameters of action com-
mands

0.5

Crossover probability 0.84

Table 2: GP parameters

During the policy synthesis, the USV learns the balance between a safe
and dangerous maneuvering by mutating the reach and range parameters of
its virtual visibility sensor. The policy is thus co-evolved with the sensor
parameters of the vehicle to control the obstacle avoidance mechanism.

The optimization of the generated default controller removes all branches
of the code that have not been executed during evaluation scenarios. More-
over, each generated action plan is truncated to contain only the action
commands that do not exceed the maximum execution time of the plan.

A detailed description of the functionality of all the operators used can
be found in (Koza 2003). The control parameters of the evolutionary process
used for evolution of the default controller and plans are summarized in Tab.
2.

28

6 Experiments

6.1 General Setup

We tested the developed approach in the context of a combat mission task
during which the USV protects a valuable target against an intruder boat.
In this task, the intruder boat has to reach the target as quickly as possible
while the USV has to block and delay the intruder for as long time as possible.
We set up an experiment to compare the performance of the automatically
generated USV's policy to the USV's policy coded by hand. We compare
the performance in terms of pure time delay imposed by the USV on the
intruder. To get a fair assessment of the USV performance, the time values
being compared must be normalized by 40 seconds baseline. This baseline
represents the amount of time needed to reach the target if the intruder
is completely unobstructed. Any additional time above this baseline thus
represents the effective delay time of the intruder when being blocked by the
USV.

The policy of the USV is evaluated in 800 runs to account for the in-
truder's nondeterministic behavior. Each evaluation run lasts for a maxi-
mum amount of time steps which equals to 300 seconds in real time. The
dimension of the scene is 800 x 800 m with the target positioned in the center.
At the beginning of each run, the USV and the intruder are oriented toward
each other with random deviation of 10 degrees and the USV is positioned
on a straight line between the intruder and the target. The initial distance of
the USV from the target is approximately 240 m while the intruder's initial
distance is 360 m. The maximum time for the evaluation run is set to 5 min-
utes. The USV's maximum velocity is 10 m/s while the intruder's maximum
velocity is 9 m/s.

6.2 Experimental Protocol

First, we manually implemented an initial version of the intruder's attacking
policy and tested it against human players to evaluate its performance in
the virtual environment. The policy was further improved in multiple itera-
tions in the span of 6 weeks. Its overall size reached 485 lines of Lisp code.
The outline of the policy functionality is described in the next section. We
evaluated the performance of the policy by pitting human players against it
playing as USVs. The human players achieved 90 seconds of pure time delay

29

imposed on the intruder in average. This shows that the intruder's attacking
policy is quite sophisticated as it exhibits a deceptive behavior.

Second, we implemented the USV's blocking policy against the hand
coded intruder. The policy was improved iteratively in the span of 3 weeks.
Its overall size reached 500 lines of Lisp code.

Third, we used the mission planning system to automatically generate
the USV's blocking policy using the hand coded intruder as the competitor.
The activation distance parameter S was set to 0.2 for all action plans. In
the current version of the approach, a state of failure is determined to be the
state in which the intruder is closer to the target than the USV. A state of
exception is computed by going back in time for 150 time steps from a given
state of failure.

Finally, we compared the performance of the automatically synthesized
USV's policy to the hand coded one.

6.3 Intruder's Policy

The design of the intruder's attacking policy was a crucial step during the
initial stages of the experimental setup. The level of aggressiveness of the
intruder's attacking behavior is defined such that the intruder presents a high
challenge for human players playing as USVs but at the same time executes
relatively safe obstacle avoidance.

The evaluation scenario is nondeterministic, i.e. the intruder may exe-
cute different actions in the same state which may lead to different outcomes.
The nondeterminism of the intruder's policy thus allows the intruder to re-
peatedly deceive the USV during the combat so that the USV is not able to
find a motion pattern in intruder's behavior that can be easily exploited for
blocking.

The nondetcrminism of the intruder's behavior puts a great challenge on
the USV policy synthesis since the same USV's policies may acquire different
fitness values when evaluated in the same test scenario. Thus for the purpose
of fair evaluation, we use one specific type of the intruder's policy for com-
puting the fitness values of all USV individuals from one specific population.
The behavior expressed by the intruder is influenced by a set of randomized
action commands that are parts of its policy. The randomized commands
take a random number as one of their inputs based on which they produce
an action. The random number is generated by a random number generator
that is initiated by explicitly provided random seed. The random seed thus

30

indirectly defines a particular type of the intruder's policy and is kept to be
the same during evaluation of USV individuals within the same population.

The hand coded intruder's policy is represented as a single decision tree
that contains standard action commands as well as their randomized ver-
sions. The intruder's policy can be divided into five main sections. Each of
these sections handles a different group of situations that can arise during
the combat. The first section handles situations in which the distance of the
intruder from the target is larger than 130 m and the angle between its trans-
lation direction and the target is more than 80 degrees. In these situations,
the intruder attempts to rapidly change its direction of movement toward
the target by aggressively turning left or right depending on the position of
the USV.

The second section handles situations in which the USV is very close to
the intruder, positioned relatively to its front left, and the target is on the
intruder's left side (see Fig. 10a left). In this case, the intruder has two
options. Either it executes a random turn with probability 0.9 or it proceeds
with a complete turn. In both cases, the intruder can slow down rapidly with
probability 0.3 to further confuse the adversary. This section handles also
similar type of situations when the USV is on the front right of the intruder
and the target is on the right.

The third section is very similar to the second section with the exception
that the USV is directly on the left or right side of the intruder (see Fig. 10a
right). In these cases, the intruder deceives the USV by randomly slowing
down to get an advantageous position, proceeding with a complete turn, or
executing a partial turn. The probability of the complete turn is 0.1 and the
probability of slowing down is 0.2.

The fourth section deals with the situations during which the intruder is
positioned behind the USV inside the rear grey area as shown in Fig. 10b
left. The larger distance of the intruder from the USV gives it opportunity to
exploit the USV's tendency to over shoot a little in the process of blocking.
In this case, if the USV has high velocity, the intruder slows down and
turns toward the stern of the blocking USV, passing the USV from behind.
Otherwise, the intruder randomly turns with probability 0.7 or it proceeds
with a complete turn (see Fig. 10b right). Again, the intruder can rapidly
slow down with probability 0.3.

Finally, if the intruder is not in a close proximity to the USV, it computes
the best sequence of actions in order to get to the target as fast as possible.

The intruder's policy can modify the reach and range parameters of its

31

virtual visibility sensor to control the balance between a safe and aggressive
obstacle avoidance mechanism. For example, if the intruder wants to make
an aggressive turn in a close proximity to the USV it has to take risk by
decreasing the reach of the sensor to be able to quickly proceed with the turn.
In this case, the sensitivity of the obstacle avoidance behavior is reduced for
a short period of time so that the intruder can easily pass the USV from
behind. If the intruder always aimed to safely avoid the adversary, it would
not get any chance to get to the target, especially if it competes against a
human player.

6.4 Results and Discussion

The experimental run that generated a blocking policy with the highest per-
formance is shown in Fig. 11. The horizontal axis of the graph shows differ-
ent versions of the policy consisting of gradually increasing amount of action
plans. The vertical axis shows the blocking performance in terms of the
intruder's pure time delay for each version of the USV's policy. The best
performance is reached by the version 82 of the policy and amounts to 47
seconds of pure delay in median. This can be compared to the pure time
delay of 46 seconds in median imposed by the hand coded USV on the same
intruder. This result thus shows that the best performance of the automati-
cally generated USV's policy exceeds the blocking performance of the hand
coded policy.

The automated generation of the policy took approximately 1 day to
generate the default controller and approximately 5 days on the average to
generate action plans for 81 automatically defined states of exception on a
machine with configuration Intel(R) Core(TM)2 Quad CPU, 2.83 GHz. Its
overall size reached 900 lines of code. From the set of 10 experimental runs,
only 2 were able to find a policy with the similar performance to the best
one. The remaining 8 runs prematurely stagnated due to over-specialization
of some of the evolved action plans. Even a single defective action plan
synthesized for one of the key situations can significantly influence the per-
formance of the whole policy. This shows that the synthesis of a policy for
the USV to block the intruder utilizing a nondeterministic attacking policy
is a challenging task.

The results show that the performance of the first few versions of the
policy is low as they contain only a few action plans describing specialized
maneuvers for a small number of key situations. However, as the synthesis

32

i

Random turn
withp=0.9

Slow down
- ...withp=0.3

I
Complete turn
with p=0.05

i

Random turn
with p=0.9

Slow down
—-..withp=0.2

I
Complete turn
withp=0.1

(a)

The USVs
velocity is high
enough for the
intruder to quickly
slowdown and
turn left

USV

Slow down

Random turn withP=0-2
withp=0.7 '•,

The USV is too
slow for the
intruder to
quickly slow
down and turn
left

USV

U Intruder

Complete turn
withp=0.3

Intruder

(b)

Figure 10: Representative portions of intruder's policy

SA

</>

70

65

60

55

50

J2 45
n
* 40
B

I35

1 25^

15

10

5

-•— LowerQ
• UpperQ

-A Average
T Median

20

—I-

40 60
—r-

80

Version of the USVs planning policy

Figure 11: Evaluation of the USVs blocking performance. The performance
is expressed as a pure time delay applied on the intruder. Each version of
the USVs policy was evaluated in 800 runs.

process progresses, more and more action plans handling new situations are
added and the overall performance gradually improves. This way the initial
policy becomes sophisticated due to newly evolved action plans. The syn-
thesis process continues until the version 82 of the policy after which the
performance stagnates. This can be attributed to difficulty in solving new
complex situations in which problems with the generalization of action plans
arise.

Evolution of a single policy against an adversary exhibiting nondeter-
ministic behavior thus generates a highly suboptimal solution. To further
improve the performance of the policy, distinctive states are automatically
isolated for which optimal short-term action plans are generated. As a result
of that, the final policy demonstrates a clear performance advantage over the
policy without the optimal substitutes.

An example of a run in which the USV reached 45 seconds of pure time

34

/2.1

Figure 12: Example of a run in which the USV managed to block the intruder
for 45 seconds. The start position of the USV is marked as 1.1 while the start
position of the intruder is marked as 2.1.

delay imposed on the intruder is shown in Fig. 12. The USV starts at the
location 1.1 while the intruder starts at the location 2.1. The first situation
in which the USV executes a specific maneuver is marked as 1.2. In this
situation, the USV steers sharply to the left in an attempt to intercept the
intruder. The run continues until 1.3 where the USV attempts to deflect
the intruder's heading by first carefully turning to the left and then aggres-
sively blocking from the side. The intruder, however, instantly responds by
executing a sharp left turn, which makes the USV to take another trial in
intercepting him in the situation 1.4. Yet the USV overshoots in the process
of blocking. The run continues for the next 23 seconds all the way up to
the target. In the situation 1.5, the intruder executes a random sequence of
two sharp turns to deceive the USV and thus to increase its chances for the
attack. The USV, however, successfully follows and takes another attempt
in intercepting the intruder but overshoots in 1.6 and the intruder finally
reaches its goal 1.7.

35

7 Main Accomplishments

The main accomplishments for Year #1 include:

1. Developed a new general approach for automated action selection policy
synthesis for unmanned vehicles operating in continuous state-action
spaces.

2. Utilized the approach in Item #1 for automated synthesis of an ac-
tion selection policy for USV to block the advancement of an intruder
boat toward a valuable target. The intruder is human-competitive and
exhibits a deceptive behavior so that the USV cannot exploit any reg-
ularity in its attacking behavior.

3. Developed a customized hierarchical behavior-based planning architec-
ture utilizing reactive and forward planning for USVs.

4. Developed a simulation environment that integrates various compo-
nents of the project into a complete simulation system and acts as a
simulation platform for the synthesis module.

5. Performed performance comparison of the hand coded and automati-
cally generated USVs blocking policy. The performance of the auto-
matically generated policy exceeded the performance of the hand coded
policy.

8 Future Plans

We do not anticipate any change to the plan presented in the proposal.
During Year #2, we plan to work on Task #5, Task #6, Task #7, Task #8,
and Task #10 described in the proposal.

9 Conclusions

We have presented a new approach for automated action selection policy
synthesis for unmanned vehicles operating in adverse environments. The idea
behind this approach is to generate an initial version of the policy first and
then further improve its performance by evolving additional components that

36

increase the performance of the policy in certain states. These components
are represented as short-term action plans that can reliably handle specific
local failure situations that can arise during the mission.

Our particular focus was on the synthesis of a symbolic policy for an au-
tonomous USV operating in a continuous state-action space with a deceptive
adversary. We have developed a mission planning system to automatically
generate a policy for USV to block the advancement of an intruder boat
toward a valuable target. The intruder is human competitive and exhibits
a deceptive behavior so that the USV cannot exploit any regularity in its
attacking action rules for blocking. The USV's policy consists of a controller
and multiple specialized action plans describing specific maneuvers that al-
low the USV to rapidly execute sequences of high-level commands in specific
situations.

In our experiments, we compared the performance of the hand coded
USV's blocking policy to the performance of the policy that was automati-
cally generated. The results show that the performance of the automatically
generated policy (47 seconds of pure delay in median) exceeds the perfor-
mance of the hand coded policy (46 seconds in median). Both of the USV's
policies were evaluated against the same set of manually implemented hu-
man competitive intruders. Hence, the approach described in this report
clearly demonstrates the viability of our approach for automat ically synthe-
sizing symbolic policy for autonomous unmanned vehicles operating in highly
dynamic environments.

References

Bacardit J, Bernado-Mansilla E, Butz M (2008) Learning Classifier Systems:
Looking Back and Glimpsing Ahead. Learning Classifier Systems pp 1-21

Baker C, Ferguson D, Dolan J (2008) Robust Mission Execution for Au-
tonomous Urban Driving. Intelligent Autonomous Systems 10: IAS-10 p
155

Barate R, Manzanera A (2007) Automatic design of vision-based obstacle
avoidance controllers using genetic programming. In: Proceedings of the
Evolution artificielle, 8th international conference on Artificial evolution.
Springer- Verlag, pp 25-36

:W

Barlow G, Oh C (2008) Evolved Navigation Control for Unmanned Aerial
Vehicles. Frontiers in Evolutionary Robotics pp 596 621

Board N (2005) Autonomous vehicles in support of naval operations. National
Research Council, Washington DC

Brooks R (1986) A robust layered control system for a mobile robot. IEEE
journal of robotics and automation 2(1):14 23

Brooks R (1991) Intelligence without representation. Artificial intelligence
47(1-3):139-159

Buason G, Bergfeldt N, Ziemke T (2005) Brains, bodies, and beyond: Com-
petitive co-evolution of robot controllers, morphologies and environments.
Genetic Programming and Evolvable Machines 6(1):25 51

Buhmann M (2001) Radial basis functions. Acta numerica 9:1 -38

Corfield S, Young .] (2006) Unmanned surface vehicles-game changing tech-
nology for naval operations. Advances in unmanned marine vehicles pp
311-328

Dain R (1998) Developing mobile robot wall-following algorithms using ge-
netic programming. Applied Intelligence 8(1):33 41

Diederich J, Tickle A, Geva S (2010) Quo Vadis? Reliable and Practical
Rule Extraction from Neural Networks. Advances in Machine Learning I
pp 479-490

Doherty D, ORiordan C (2006) Evolving agent-based team tactics for com-
bative computer games. In: AICS 2006 17th Irish Artificial Intelligence
and Cognitive Science Conference

Dupuis J, Parizeau M (2006) Evolving a Vision-Based Line-Following Robot
Controller. In: IEEE Proceedings, Citeseer

Finn A, Scheding S (2010) Developments and Challenges for Autonomous
Unmanned Vehicles: A Compendium. Springer

Floreano D, Mattiussi C (2008) Bio-inspired artificial intelligence: theories,
methods, and technologies

38

Gajda P, Krawiec K (2008) Evolving a vision-driven robot controller for
real-world indoor navigation. In: Proceedings of the 2008 conference on
Applications of evolutionary computing, Springer-Verlag, pp 184-193

Goldberg D (1989) Genetic Algorithms in Search and Optimization

Haynes T, Sen S (1996) Evolving behavioral strategies in predators and prey.
Adaption and Learning in Multi-Agent Systems pp 113-126

van Hoorn N, Togelius J, Schmidhuber J (2009) Hierarchical controller learn-
ing in a first-person shooter. In: IEEE Symposium on Computational In-
telligence and Games (CIG 2009), pp 294-301

Ibe O (2009) Markov processes for stochastic modeling. Academic Press

Jaskowski W, Krawiec K, Wieloch B (2008) Winning ant wars: Evolving a
human-competitive game strategy using fitnessless selection. In: Genetic
programming: 11th European Conference, EuroGP 2008, Naples, Italy,
March 26-28, 2008: proceedings, Springer-Verlag New York Inc. p 13

Kohl N, Miikkulainen R (2008) Evolving neural networks for fractured do-
mains. In: Proceedings of the 10th annual conference on Genetic and evo-
lutionary computation, ACM, pp 1405-1412

Koza J (2003) Genetic programming IV: Routine human-competitive ma-
chine intelligence. Kluwer Academic Pub

Koza J, Rice J (1992) Automatic programming of robots using genetic pro-
gramming. In: Proceedings of the national conference on artificial intelli-
gence, Citeseer, pp 194-194

Lanzi P (2008) Learning classifier systems: then and now. Evolutionary In-
telligence 1(1):63 82

LaValle S (2009) Filtering and planning in information spaces. IROS tutorial
notes

Lipson H, Antonsson E, Koza J, Bentley P, Michod R. Alber R, Rudolph S.
Andronache V, Scheutz M, Arzi-Gonczarowski Z, et al (2003) Computa-
tional synthesis: from basic building blocks to high level functionality. In:
Proc. Assoc. Adv. Artif. Intell. Symp, pp 24 31

39

Nehmzow U (2002) Physically embedded genetic algorithm learning in multi-
robot scenarios: The PEGA algorithm. In: 2nd International Workshop
on Epigenetic Robotics: Modelling Cognitive Development in Robotic Sys-
tems, Citeseer

Poli R, Langdon W, McPhcc N (2008) A field guide to genetic programming.
Lulu Enterprises Uk Ltd

Richards M, Whitley D, Beveridge J, Mytkowicz T, Nguyen D, Rome D
(2005) Evolving cooperative strategies for UAV teams. In: Proceedings of
the 2005 conference on Genetic and evolutionary computation, ACM, p
1728

Ryan J. et al (2009) Learning classifier systems: a complete introduction,
review, and roadmap. Journal of Artificial Evolution and Applications 2009

Schrum J, Miikkulainen R (2009) Evolving multi-modal behavior in NPCs.
In: Proceedings of the 5th international conference on Computational In-
telligence and Games, IEEE Press, pp 325 332

Schwartz M, Svec P, Thakur A, Gupta S (2009) Evaluation of Automatically
Generated Reactive Planning Logic for Unmanned Surface Vehicles. In:
Performance Metrics for Intelligent Systems Workshop (PERMIS'09)

Shichel Y, Ziserman E, Sipper M (2005) GP-robocode: Using genetic pro-
gramming to evolve robocode players. Genetic Programming pp 143-154

Sipper M, Azaria Y, Hauptman A, Shichel Y (2007) Designing an evolution-
ary strategizing machine for game playing and beyond. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews
37(4):583-593

Stanley K, Miikkulainen R (2002) Evolving neural networks through aug-
menting topologies. Evolutionary Computation 10(2):99-127

Stanley K, D'Ambrosio D, Gauci J (2009) A hypercube-based encoding for
evolving large-scale neural networks. Artificial Life 15(2):185 212

Sutton R, Barto A (1998) Reinforcement learning: An introduction. The
MIT press

Id

Svec P, Gupta S (2010) Automated planning logic synthesis for autonomous
unmanned vehicles in competitive environments with deceptive adver-
saries. In: New Horizons in Evolutionary Robotics: post-proceedings of
the 2009 EvoDeRob workshop, Studies in Computational Intelligence,
Springer, accepted for publication

Svec P, Schwartz M, Thakur A, Anand D, Gupta S (2010) A simulation based
framework for discovering planning logic for Unmanned Surface Vehicles.
In: ASME Engineering Systems Design and Analysis Conference, Istanbul,
Turkey

Thakur A, Gupta S (2010) A Computational Framework for Real-Time Un-
manned Sea Surface Vehicle Motion Simulation. In: ASME 2010 Interna-
tional Design Engineering Technical Conferences (IDETC) & Computers
and Information in Engineering Conference (CIE), Montreal, Canada

Togelius J, Burrow P, Lucas S, et al (2007) Multi-population competitive
co-evolution of car racing controllers. In: IEEE Congress on Evolutionary
Computation (CEC'07), September 25-28, Singapore, pp 4043-4050

11

